- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chakravarthula, Praneeth (1)
-
Fuchs, Henry (1)
-
Li, Siyuan (1)
-
Liu, Kaihao (1)
-
Liu, Xixiang (1)
-
Lu, Conny (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Eye tracking has already made its way to current commercial wearable display devices, and is becoming increasingly important for virtual and augmented reality applications. However, the existing model-based eye tracking solutions are not capable of conducting very accurate gaze angle measurements, and may not be sufficient to solve challenging display problems such as pupil steering or eyebox expansion. In this paper, we argue that accurate detection and localization of pupil in 3D space is a necessary intermediate step in model-based eye tracking. Existing methods and datasets either ignore evaluating the accuracy of 3D pupil localization or evaluate it only on synthetic data. To this end, we capture the first 3D pupilgaze-measurement dataset using a high precision setup with head stabilization and release it as the first benchmark dataset to evaluate both 3D pupil localization and gaze tracking methods. Furthermore, we utilize an advanced eye model to replace the commonly used oversimplified eye model. Leveraging the eye model, we propose a novel 3D pupil localization method with a deep learning-based corneal refraction correction. We demonstrate that our method outperforms the state-of-the-art works by reducing the 3D pupil localization error by 47.5% and the gaze estimation error by 18.7%. Our dataset and codes can be found here: link.more » « less
An official website of the United States government
